The Limit of a Function

- -Limits will set the stage for the first real "calculus" part of the course.
- -Limits will need to be evaluated intuitively, analytically and graphically.
- -No formal definition will be used to define a limit at the point.

Limits by Graphing

-Because limits are intuitive, one of the first tools that we can use is a graph to determine a limit.

- -We can use a graph to view where a function is APPROACHING!
- -We are not concerned with where a function is defined but where it is approaching a value.

-Looking at the graphs we can trace the function with a left and right finger and see what value is being approached.

Notation

-The notation

$$\lim_{x\to c} f(x) = L$$

is read "the limit of f of x as x approaches c is L"

-If the limit approaches a value L from both sides we say the limit <u>converges</u> to the value L.

Limits that doe not exist

- -Sometimes when evaluating a limit you will find that the value as $x \rightarrow c$ will not be finite.
- -If $\lim_{x\to c} f(x)$ fails to exist we say that f(x) diverges as $x\to c$.

$$f(x) = \frac{1}{x^2}$$

 $\lim_{x\to 0} f(x)$ increases without bound and is said to diverge

- -Using the graphing calculus we can look at a table of values to observe the behavior of the function.
- -Observe the function $f(x) = \frac{1}{x^2}$
- -Using the **tblset** feature we can change where the values tart and how fast they change $\left(\Delta x\right)$
 - -Start with Tblstart = 0, $\Delta Tbl = 0.5$
 - -0 yields an error (the function is undefined there). However we do NOT need the function to be defined for the limit to exist.

X	[Y1]	
5 1 1.5 2.5 3	ERROR 1 4444 1444 1444 1444 1444 1444 1444 1	
X=0		

-Change to $\Delta TbI = 0.05$

<u>X</u>	[Y1	
.05 .1 .15 .2 .25	ERROR 400 100 44.444 25 16 11.111	
Х= й		

-Change to $\Delta TbI = 0.005$

X	Υ 1	
.005 .01 .015 .02 .025 .03	ERROR 40000 10000 4444.4 2500 1600 1111.1	
X=0		