The Limit of a Function

-Limits will set the stage for the first real "calculus" part of the course.
-Limits will need to be evaluated intuitively, analytically and graphically.
-No formal definition will be used to define a limit at the point.

Limits by Graphing

-Because limits are intuitive, one of the first tools that we can use is a graph to determine a limit.

-We can use a graph to view where a function is APPROACHING!
-We are not concerned with where a function is defined but where it is approaching a value.
-Looking at the graphs we can trace the function with a left and right finger and see what value is being approached.

Notation

-The notation

$$
\lim _{x \rightarrow c} f(x)=L
$$

is read "the limit of f of x as x approaches c is L "
-If the limit approaches a value L from both sides we say the limit converges to the value L.

Limits that doe not exist

-Sometimes when evaluating a limit you will find that the value as $x \rightarrow c$ will not be finite.
-If $\lim _{x \rightarrow c} f(x)$ fails to exist we say that $f(x)$ diverges as $x \rightarrow c$.
$f(x)=\frac{1}{x^{2}}$

$\lim _{x \rightarrow 0} f(x)$ increases without bound and is said to diverge
-Using the graphing calculus we can look at a table of values to observe the behavior of the function.
-Observe the function $f(x)=\frac{1}{x^{2}}$
-Using the tblset feature we can change where the values tart and how fast they change (Δx)
-Start with Tblstart $=0, \Delta \mathrm{~Tb}=0.5$
-0 yields an error (the function is undefined there). However we do NOT need the function to be defined for the limit to exist.

-Change to $\Delta \mathrm{Tb}=0.05$

Y	$W 1$
\square	EFFidi
. 05	4idi
. 1	100
. 15	44.44
E	
E	16.111

-Change to $\Delta T b l=0.005$

